Information vs Interaction: An Alternative User Ranking Model for Social Networks
نویسندگان
چکیده
The recent years have seen an unprecedented boom of social network services, such as Twitter, which boasts over 200 million users. In such big social platforms, the influential users are ideal targets for viral marketing to potentially reach an audience of maximal size. Most proposed algorithms rely on the linkage structure of the respective underlying network to determine the information flow and hence indicate a users influence. From social interaction perspective, we built a model based on the dynamic user interactions constantly taking place on top of these linkage structures. In particular, in the Twitter setting we supposed a principle of balanced retweet reciprocity, and then formulated it to disclose the values of Twitter users. Our experiments on real Twitter data demonstrated that our proposed model presents different yet equally insightful ranking results. Besides, the conducted prediction test showed the correctness of our model.
منابع مشابه
Similarity measurement for describe user images in social media
Online social networks like Instagram are places for communication. Also, these media produce rich metadata which are useful for further analysis in many fields including health and cognitive science. Many researchers are using these metadata like hashtags, images, etc. to detect patterns of user activities. However, there are several serious ambiguities like how much reliable are these informa...
متن کاملInvestigating the Impact of Authors’ Rank in Bibliographic Networks on Expertise Retrieval
Background and Aim: this research investigates the impact of authors’ rank in Bibliographic networks on document-centered model of Expertise Retrieval. Its purpose is to find out what kind of authors’ ranking in bibliographic networks can improve the performance of document-centered model. Methodology: Current research is an experimental one. To operationalize research goals, a new test colle...
متن کاملA Review of Spatial Factor Modeling Techniques in Recommending Point of Interest Using Location-based Social Network Information
The rapid growth of mobile phone technology and its combination with various technologies like GPS has added location context to social networks and has led to the formation of location-based social networks. In social networking sites, recommender systems are used to recommend points of interest (POIs) to users. Traditional recommender systems, such as film and book recommendations, have a lon...
متن کاملFinding Influentials in Twitter: A Temporal Influence Ranking Model
With the growing popularity of online social media, identifying influential users in these social networks has become very popular. Existing works have studied user attributes, network structure and user interactions when measuring user influence. In contrast to these works, we focus on user behavioural characteristics. We investigate the temporal dynamics of user activity patterns and how thes...
متن کاملA social recommender system based on matrix factorization considering dynamics of user preferences
With the expansion of social networks, the use of recommender systems in these networks has attracted considerable attention. Recommender systems have become an important tool for alleviating the information that overload problem of users by providing personalized recommendations to a user who might like based on past preferences or observed behavior about one or various items. In these systems...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013